Spontaneous low-frequency fluctuations in the BOLD signal in schizophrenic patients: anomalies in the default network.

نویسندگان

  • Robyn L Bluhm
  • Jodi Miller
  • Ruth A Lanius
  • Elizabeth A Osuch
  • Kristine Boksman
  • R W J Neufeld
  • Jean Théberge
  • Betsy Schaefer
  • Peter Williamson
چکیده

Spontaneous low-frequency fluctuations in the blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (MRI) signal have been shown to reflect neural synchrony between brain regions. A "default network" of spontaneous low-frequency fluctuations has been described in healthy volunteers during stimulus-independent thought. Negatively correlated with this network are regions activated during attention-demanding tasks. Both these networks involve brain regions and functions that have been linked with schizophrenia in previous research. The present study examined spontaneous slow fluctuations in the BOLD signal at rest, as measured by correlation with low-frequency oscillations in the posterior cingulate, in 17 schizophrenic patients, and 17 comparable healthy volunteers. Healthy volunteers demonstrated correlation between spontaneous low-frequency fluctuations of the BOLD signal in the posterior cingulate and fluctuations in the lateral parietal, medial prefrontal, and cerebellar regions, similar to previous reports. Schizophrenic patients had significantly less correlation between spontaneous slow activity in the posterior cingulate and that in the lateral parietal, medial prefrontal, and cerebellar regions. Connectivity of the posterior cingulate was found to vary with both positive and negative symptoms in schizophrenic patients. Because these data suggest significant abnormalities in resting-state neural networks in schizophrenia, further investigations of spontaneous slow fluctuations of the BOLD signal seem warranted in this population.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Verbal fluency and intrinsic brain activity in Alzheimer’s disease

Growing evidence from task-based functional magnetic resonance imaging (fMRI) studies consistently indicates network abnormalities in Alzheimer’s disease (AD) patients (1,2). While a picture is emerging on how these changes affect cognition and behavior at various stages of the disease, there is less understanding of the changes in functional connectivity between spatially distant brain areas i...

متن کامل

How default is the default mode of brain function? Further evidence from intrinsic BOLD signal fluctuations.

The default mode of brain function hypothesis and the presence of spontaneous intrinsic low-frequency signal fluctuations during rest have recently attracted attention in the neuroscience community. In this study we asked two questions: First, is it possible to attenuate intrinsic activity in the self-referential, default mode of brain function by directing the brains resources to a goal-orient...

متن کامل

176 Functional Mapping Using Infra-slow Gamma Band Fluctuations in Spontaneous Electrocorticography.

Introduction Resting state functional networks were defined using fMRI: correlations in BOLD signal persisted during stimulus-free activity, corresponded spatially with functional cortex, and were used to describe attentional systems such as the default mode network. Correlations in spontaneous, infra-slow (<0.1 Hz) fluctuations in gamma band (70-100 Hz) signal recorded using electricocorticogr...

متن کامل

Frequency-Specific Alterations of Local Synchronization in Idiopathic Generalized Epilepsy

Recurrently and abnormally hypersynchronous discharge is a striking feature of idiopathic generalized epilepsy (IGE). Resting-state functional magnetic resonance imaging has revealed aberrant spontaneous brain synchronization, predominately in low-frequency range (<0.1 Hz), in individuals with IGE. Little is known, however, about these changes in local synchronization across different frequency...

متن کامل

Spontaneous low-frequency blood oxygenation level-dependent fluctuations and functional connectivity analysis of the 'resting' brain.

Functional magnetic resonance imaging techniques using the blood oxygenation level-dependent (BOLD) contrast are widely used to map human brain function by relating local hemodynamic responses to neuronal stimuli compared to control conditions. There is increasing interest in spontaneous cerebral BOLD fluctuations that are prominent in the low-frequency range (<0.1 Hz) and show intriguing spati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Schizophrenia bulletin

دوره 33 4  شماره 

صفحات  -

تاریخ انتشار 2007